The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds
نویسندگان
چکیده
© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Classification of Bochner Flat Kähler Manifolds by Heisenberg, Spherical CR Geometry
A Bochner flat Kähler manifold is a Kähler manifold with vanishing Bochner curvature tensor. We shall give a uniformization of Bochner flat Kähler manifolds. One of the aims of this paper is to give a correction to the proof of our previous paper [9] concerning uniformization of Bochner flat Kähler manifolds. A Bochner flat locally conformal Kähler manifold is a locally conformal Kähler manifol...
متن کاملThe Penrose transform on conformally Bochner-Kähler manifolds
We give a generalization of the Penrose transform on Hermitian manifolds with metrics locally conformally equivalent to Bochner-Kähler metrics. We also give an explicit formula for the inverse transform. 1991 Mathematics Subject Classification: 32L25 (Primary), 53C55, 32C35 (Secondary)
متن کاملMagnetic Schrödinger operators with discrete spectra on non-compact Kähler manifolds
We identify a class of magnetic Schrödinger operators on Kähler manifolds which exhibit pure point spectrum. To this end we embed the Schrödinger problem into a Dirac-type problem via a parallel spinor and use a Bochner-Weitzenböck argument to prove our spectral discreteness criterion.
متن کاملKähler Metrics Generated by Functions of the Time-like Distance in the Flat Kähler-lorentz Space
We prove that every Kähler metric, whose potential is a function of the timelike distance in the flat Kähler-Lorentz space, is of quasi-constant holomorphic sectional curvatures, satisfying certain conditions. This gives a local classification of the Kähler manifolds with the above mentioned metrics. New examples of Sasakian space forms are obtained as real hypersurfaces of a Kähler space form ...
متن کاملThéorème de Bochner et feuilletage minimal
The starting point of this work is the Bochner theorem on harmonics 1-forms stated at 1946. We show that many results on minimal foliations of codimension one and two on compact pseudo-Riemannian manifolds are at the origin of this theorem. We also prove the non existence of minimal Riemannian foliations of codimension one defined by a 1-form with finite global norm on complete non compact Riem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017